
WWW.MEDSCI MONIT.COM

Review Article
Signature: Med Sci Monit, 2002; 8(1): RA1-4
PMID: 11782688

RA1

Tonal nitric oxide and health – a free radical 
and a scavenger of free radicals
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Summary:
Basal/tonal nitric oxide (NO) production helps maintain particular microenvironments, i.e.,
vascular. Besides NO’s function in controlling the activation state of various tissues such as
immune cells, its presence appears to modulate other free radical levels, i.e., H2O2, in these
same tissues and indeed these processes may be one and the same. Thus, by being a free radi-
cal, along with the ability to scavenge other free radicals, NO is placed in a pivotal regulatory
position. We surmise that in the absence of adequate NO release other free radicals may go
‘unchecked’ and, therefore, initiate tissue damage. Furthermore, under these circumstances,
proinflammatory events will occur due to heightened cell sensitivity and a diminished control
of NF-κB. In an excess situation, and one without an appropriate circumstance, i.e., microbial
action, NO may become the harmful agent. Hence, balancing basal NO production in body
compartments may represent a fundamental process in maintaining general, long-term
health.
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NITRIC OXIDE

Nitric oxide (NO) signaling occurs in diverse systems
including the immune, cardiovascular and nervous
[1–6]. It also occurs in evolutionarily diverse organisms
[7,8]. NO is produced from L-arginine by the enzyme
NO synthase (NOS) [4,9], which occurs in three forms:
endothelial (e), neuronal (n) and inducible (i) NOS.

NO derived from e- or n- (constitutively [c] expressed
forms) cNOS may occur in two functional forms: the
first is always present at low ‘tonal’ or ‘basal’ levels
which can be increased slightly for a short time in
response to various biological signals [5] such as acetyl-
choline (ACH). This brief enhanced release of cNOS
derived NO can have profound physiological actions
that are evident long after NO levels have returned to
the basal level of production [10]. In this regard,
immune and vascular endothelial cells can be down re-
gulated by NO, see [7]. We have hypothesized that cer-
tain classes of cells are always activated and thus can
respond to immediate microenvironmental changes [7].
We further speculate that basal or tonal NO levels may
provide a major pathway to dampen these cells sensitivi-
ty to microenvironmental ‘noise’ that would otherwise
nonspecifically and inappropriately lead to increased
activation [7]. In this regard, NO may modulate the
threshold required for activation of these cells [7] and
the magnitude of the subsequent response [11].
Diminished NO levels would then represent a disinhibi-
tion process that results in an overcoming of the
inhibitory influence by changing the level of NO pro-
duction and the corresponding levels of excitatory sig-
nals required for cellular activation (see [7]).

NO AND NF-KB

As an example of tonal NO’s significance, the transcrip-
tion factor NF-kB plays a pivotal role in regulation of
gene expression induced by inflammatory mediators
such as cytokines and adhesion molecules [12]. NO has
been associated with NF-kB inactivation [13-17]. Our
previous reports document the effect of NO on NF-kB
[7,18–20]. NF-kB mediated transcriptional activation of
many proinflammatory signal molecules/genes is inhibit-
ed by NO in a variety of cells including monocytes
[7,18–23]. Thus, NO, aside from its cGMP influences,
profoundly impacts DNA events leading to proinflam-
matory events.

NO AS AN ANTIOXIDANT FREE RADICAL

The intensity and diversity of current research regard-
ing NO demonstrate the complexity of the interactions
of this simple molecule. NO, a free radical, has actually
been shown to be a beneficial antioxidant against reac-
tive oxygen species (ROS), such as H2O2 and O2

–,
[24,25]. When L-arginine, a precursor of NO, was
administered to rats in which experimental allergic
encephalitis (EAE) was induced, increased levels of NO
were shown to be correlated to a decrease in superoxide
and hydrogen peroxide levels, demonstrating a role as a
protective molecule [26]. There is also evidence of a role

in the production of ROS. Varying rates of endogenous
NO production resulted in a reciprocal correlation of
released H2O2 in rat liver mitochondria. This seems to
be due to a regulation of O2 consumption at the level of
the cytochrome oxidase [27]. It has been found that the
antioxidant properties of NO can be greatly increased
by the activation of specific pathways leading to
increased endogenous antioxidant production or down
regulated pro-inflammatory responses [28].

Much research has also been done to examine NO’s role
in decreasing lipid peroxidation [24,29–31], but this
process appears to be determined by the relative con-
centration of NO as compared to the reactive oxidant
species. When it is in excess of the ROS, then lipid oxi-
dation is decreased; but when NO levels drop below
that of the ROS, lipid oxidation reactions propagate
[32]. Nitric oxide has also been demonstrated to protect
cells from tert-butyl hydroperoxide (tBOOH), a com-
pound of lipid peroxidation. The generation of
tBOOH-derived free radicals and tBOOH-induced
cytotoxicity were both attenuated by endogenously pro-
duced or exogenously added NO [33-35]. In human
erythroleukemia cells, t-BuOOH-induced oxoferryl and
t-BuO alkoxyl radicals were chemically reduced by NO
[34].

From the earlier discussion it becomes clear that the
basal level of NO, derived from cNOS, may serve as the
key modulator regulating a complex cascading process
associated with maintaining cell health [7,36]. It
becomes important to determine how a particular
microenvironment may alter basal NO levels because, in
turn, we learn how NO functions, varied by circum-
stance. NO has the potential to interact with oxygen,
metals and other free radicals [37]. NO can also form
peroxynitrite (ONOO–) and dinitrogen trioxide (N2O3),
following an interaction with the superoxide radical (O2

–)
and oxygen, respectively [38]. In this regard, NO’s
direct effect is felt when its level is low and of short
duration, such as that occurring under physiological
conditions, including the right pH [38]. For example,
NO interaction with the heme proteins represents the
activation of soluble guanylyl cyclase (sGC) and/or
cyclooxygenase (COX) [39-41]. This last interaction is
important in the regulation of a proinflammatory
process [41]. At low concentrations (e.g., when it is scav-
enged), NO modulates the redox form of COX, con-
verting the ferrous iron to the ferric active form, acting
also as a scavenger of superoxide [38]. In addition, NO
has the ability to inhibit lipoxygenase, as noted earlier
[42]. It can reversibly inhibit the heme moiety of
cytochrome P-450, preventing the binding of oxygen to
the catalytic sites [43,44].

Interestingly, at low NO levels, H2O2 can be consumed
to yield HNO2 [38,45], suggesting that H2O2 might
serve to control NO levels [38]. Indeed, the activation of
monocytes, with interferon γ for 24hr, results in the
appearance of activated ameboid monocytes as opposed
to inactive cells despite the production of high levels of
NO. Cell activation is abrogated in the presence of cata-
lase or superoxide dismutase, suggesting that H2O2
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inhibition of NO suppression represents an important
regulator of cellular activation [46]. Thus, in the
absence of H2O2, NO activity may be unregulated
whereas in the absence of NO, H2O2 may generate tis-
sue damage and disruption in energy metabolism as evi-
dent in Alzheimer’s Disease [7,36]. In any case, the
basal/tonal level of NO may represent a specific signal to
maintaining ‘cell’ health.

Mitochondria represent a NO target due to the fact that
NO is an inhibitor of cytochrome oxidase of the electron
transport process [47-52], which suggests a NO role in
modulating oxygen utilization [47]. The inhibition of
cNOS-derived NO increases oxygen consumption in
many animal species [53-57]. This last fact is critical to
our NO hypothesis concerning alterations in basal NO
levels since its regulatory process may be stopped (see
earlier discussion). Furthermore, a NOS isoform,
mtNOS, is present in mitochondria [48,58], suggesting
an important modulatory function as well.

Heme proteins (e.g, hemoglobin, cytochromes, etc.)
reacting with H2O2 results in ferryl cation (Fe4++O), a
toxic substance [59]. However, once in contact with NO,
this compound is reduced (Fe3++NO2

–) [38], demon-
strating again a NO antioxidant action. NO also has the
potential to diminish the formation of OH•, again,
demonstrating an antioxidant action [60]. This scaveng-
ing property gives NO a major intracellular and extra-
cellular action against oxidative stress [38,61–67]. Here,
we note that in the absence of NO, these reactive chemi-
cal species may cause tissue damage associated with a
pathological progression.

In summary, it would appear that basal/tonal NO pro-
duction helps maintain particular microenvironments,
i.e., vascular, see [7,36,68]. Besides NO’s function in
controlling the activation state of various tissues, such as
immune cells, its presence may also control free radical
levels in these same tissues and indeed these processes
may be one. Hence, by being a free radical, along with
the ability to scavenge other free radicals, NO is placed
in a pivotal regulatory position. We surmise that in the
absence of adequate NO release, other free radicals may
go ‘unchecked’ and, therefore, initiate tissue damage,
see [36,68]. Furthermore, under these circumstances,
proinflammatory events will occur due to heightened
cell sensitivity and a diminished control of NF-kB. In an
excess situation and one without an appropriate circum-
stance, i.e., antimicrobial action, NO, by itself, may
become the harmful agent (see above). Thus, balancing
and maintaining basal NO production, exerting a tonal
effect, in microenvironments may represent a funda-
mental process in maintaining general health over the
long term.
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